Course Title	Biochemistry II				
Course Code	MED-209				
Course Type	Required				
Level	Undergraduate				
Year / Semester	Year 2/ Seme	ester 4 (Spring)			
Teacher's Name	Course Lead: Dr Chloe Antoniou				
ECTS	6	Lectures / week	3	Laboratories / week	2
Course Purpose and Objectives	The aim of this course is to provide students with an in-depth understanding of fundamental principles biochemistry, cell and molecular biology topics. This course is the second course of a series of two biochemistry courses and starts of with section on metabolism and nutrition which serves as a continuation of the first course. The second part of the course focused on fundamental topics of cell and molecular biology. The specific objectives of the course will be accomplished through lectures, laboratory sessions and tutorials in order for students to not only understand the material, but also develop skills in order to apply their knowledge.				
Learning Outcomes	The following list provides the learning objectives that will be covered in the lectures, laboratory practicals and tutorials of each week:				
	Week 1				
	LOBs covered during lectures:				
	 Describe the reactions of the pentose phosphate pathway and its regulation. 				
	 Discuss disorders related to the pentose phosphate pathway such as glucose 6-phosphate dehydrogenase deficiency. 				
	3. Discuss th	ne metabolism of	purines and	pyrimidines.	
	4. Describe the role of chemotherapy drugs in nucleotide metabolism.				
	5. Discuss disorders of nucleotide metabolism.				
	LOBs covered during tutorial:				
	6. Discuss the overall aims of the lab project.				
	7. Describe and explain the experiments used in the lab project.				
	8. Discuss how to interpret potential results.				
	Week 2 LOBs covere	ed during lecture	9S <i>:</i>		

9. Define basic concepts in nutrition e.g. essential nutrients, balanced diet, recommended daily allowance, body mass index etc.
10. Describe the functions of vitamins A, C, D, E and K.
 Describe the functions of the B vitamins and discuss examples of metabolic reactions that require them.
12. Discuss vitamin deficiencies and toxicities.
 Define major and trace minerals and discuss the effects of their deficiencies and toxicities.
14. Discuss the metabolism of phospholipids and its regulation.
15. Discuss the metabolism of sphingolipids and its regulation.
16. Discuss the metabolism of eicosanoids and its regulation.
LOBs covered during laboratory practical:
17. Explain the principles behind the process of DNA extraction.
 Explain how to determine DNA concentrations from absorbance measurements.
19. Perform DNA isolation from saliva and calculate the concentrations of the resulting DNA sample.
Week 3
I OBs covered during lectures:
20 Discuss the metabolism of steroids (hormones, cholesterol, vitamin
D etc.) and their regulation.
21. Discuss the structure, function and metabolism of creatine.
22. Discuss the structure, function and metabolism of glutathione.
23. Discuss the structure, function and metabolism of S- adenosylmethionine.
24. Discuss the structure, function and metabolism of GABA.
25. Discuss the structure, function and metabolism of heme.
26. Discuss the structure, function and metabolism of nitric oxide.
27. Discuss the structure, function and metabolism of catecholamins.
28. Discuss the structure, function and metabolism of histamine.
29. Discuss the structure, function and metabolism of melanin.
30. Discuss the structure, function and metabolism of peptide hormones such as insulin, of thyroid hormones and hormones of the renin-angiotensin system.
LORe severed during tutericly
LOBS covered during tutorial:
USIVILE problem solving

Week 4

LOBs covered during lectures:

- 31. Describe the metabolic reactions carried out by the lysosome and their related disorders
- 32. Describe the reactions carried out by peroxisomes and their related disorders.
- 33. Revise the basic principles of transcription, translation and recombination.

LOBs covered during laboratory practical:

34. Perform a PCR experiment with the isolated DNA.

Week 5

LOBs covered during lectures:

- 35. Outline methods used in determining DNA sequences using dideoxy sequencing and RFLP analysis.
- 36. Outline methods in high throughput sequencing and their applications.
- 37. Describe applications of DNA sequencing.
- 38. Discuss the applications of recombinant protein technologies in medicine.
- 39. Discuss how bacteria, yeast and other organisms can be used in recombinant technologies.
- 40. Discuss techniques used in recombinant protein technologies such as plasmid construction.
- 41. Explain commonly used blotting techniques.
- 42. Explain commonly used techniques such the yeast-two-hybrid system.
- LOBs covered during tutorial:

Revision

Week 6

LOBs covered during lectures:

Revision.

Formative Midterm Exam

Week 7 LOBs covered during lectures:

43. Explain how to experimentally determine gene expression at the mRNA level using techniques such as quantitative reverse transcription PCR.
44. Explain how to experimentally determine gene expression at the protein level using techniques such as Western blots, ELISAs and fluorescence microscopy.
 Describe the co-translational and post-translational protein sorting pathways.
46. Explain how proteins are targeted to different cellular locations.
47. Discuss disorders that result from improper protein targeting.
LOBs covered during practical:
 Discuss the appropriate controls for the experiment and how to interpret different potential results.
49. Perform a restriction digestion of the PCR product of the previous step.
Week 8
LOBs covered during lectures:
 Discuss the different types of post translational modifications such as proteolytic cleavage, phosphorylation and acetylation amongst others.
51. Discuss examples for each type of post translational modification and discuss their importance.
52. Explain O- and N-linked glycosylation.
53. Discuss medically relevant examples of glycosylated proteins such as erythropoietin and the ABO blood group system.
LOBs covered during lab practical:
54. Perform DNA electrophoresis.
55. Explain how to determine the size of DNA fragments from a gel.
Week 9 LOBs covered during lectures:
56. Describe the structure and function of ubiquitin.
57. Explain what types of proteins are ubiquitinated and how ubiquitin is attached onto them.
58. Discuss how the proteasome breaks down ubiquitinated proteins.
59. Discuss the synthesis and post translational modifications of collagen.
60. Explain the different types of DNA repair mechanisms and provide examples of each one.

61. Discuss how errors in repair mechanisms can result to cancer.
62. Discuss the checkpoints of the Cell Cycle.
LOBs covered during tutorial:
USMLE Problem solving
Week 10
LOBs covered during lectures:
63. Explain how the Cell Cycle is regulated and how errors in regulation may result to cancer.
 64. Define and provide examples of tumor suppressor genes and oncogenes.
65. Describe the role of p53 in cancer.
66. Discuss the role of viruses, such as HPV, in cancer.
67. Define apoptosis and necrosis and discuss their differences.
 68. Define causes of cell injury and necrosis and describe pathologic processes (e.g. liquefactive necrosis and free radical formation.
69. Discuss the different types of apoptotic pathways.
70. Discuss chemotherapy drugs as inducers of apoptosis.
71. Discuss the role of genes commonly associated with different types of cancer.
72. Discuss briefly the different chromosomal translocations that lead to cancer formation.
LOBs covered during tutorial:
Problem solving
Week 11
LOBs covered during lectures:
73. Describe local and long distance signaling.
 Describe the different types of receptors and give examples of each.
75. Explain the basic principles of receptor-ligand binding.
 Describe the general structure of G protein coupled receptors (GPCRs).
77. Describe the epinephrine signaling pathway as an example of a GPCR signaling pathway.
78. Discuss the process of GPCR receptor desensitization.
79. Discuss the phosphoinositide pathway of GPCR signaling.

	LOBs covered during tutorial:					
	Problem solving					
	Week 12 LOBs covered during lectures:					
	80. Describe the structure of tyrosine kinase receptors.					
	81. Explain the MAPK signaling pathway of the insulin receptor.					
	82. Discuss the phosphoinositide 3-kinase branch point of insulin signaling.					
	 Biscuss the guanylyl cyclase family of tyrosine kinase receptors and provide examples. 					
	84. Discuss signal transduction of cytokine receptors via the JAK- STAT tyrosine kinase receptors.					
	85. Discuss the structure and function of serine-threonine kinases.					
	86. Discuss signalling via serine-thr	eonine kinases such	n as TGF-⊡.			
	LOBs covered during tutorial:					
	Revision					
Prerequisites	MED-204 Biochemistry I	Required	None			
Course Content	Topics covered in lectures:					
	The pentose phosphate path	hway.				
	Nucleotide metabolism.					
	Metabolism of phospholipids, sphingolipids and eicosanoids.					
	Lysosomes and related disorders.					
	Metabolism of steroids.					
	Metabolism of amino acid derivatives.					
	Peroxisomes and related disorders.					
	Introduction to nutrition.					
	Vitamins and minerals.					
	DNA replication, recombinat	tion, transcription an	d translation.			
	Protein sorting.					
	Post-translational modifications.					
	DNA repair.					
	The cell cycle.					
	Regulation of the cell cycle and implications in cancer.					

	Oncogenes and tumor suppressor genes.						
	Apoptosis and necrosis.						
	Overview of cancer genetics.						
	Signal transduction I: basic principles.						
	 Signal to 	Signal transduction II and III: G Protein Coupled Receptors.					
	 Signal T Kinase 	 Signal Transduction IV: Enzyme Coupled Receptors -Tyrosine Kinase Receptors. 					
	 Signal T serine-tl 	 Signal Transduction V: Enzyme Coupled Receptors -Receptor serine-threonine kinases. 					
	Topics covered in lab practicals:						
	 Isolation and quantification of DNA from saliva. 						
	Polymer	Polymerase chain reaction (PCR).					
	Restrict	Restriction digestion of PCR products.					
	DNA ele	ectrophoresis.					
	Molecul	ar biology and	recombina	ant technolog	y technic	ques.	
	Topics cover	ed in tutorials	:				
	Introduction to lab project						
	 Methods in determining DNA sequences 						
	Molecular Biology Techniques						
	Detecting and Quantifying Gene Expression						
	 Problem solving. 						
Teeching	Looturoo Tutoriolo Loborotory Prostical Sessions						
Methodology	Lectures, Tutorials, Laboratory Practical Sessions.						
Bibliography	Required Textbooks/Reading						
	Authors	Title	Edition	Publis her	Year	ISBN	
	David L. Nelson and Michael M. Cox	Lehninger Principles of Biochemistry	7 th edition	W. H. Freeman and Company	2017	97813191 08243	
	Recommended Textbooks/Reading						
	Authors	Title	Editi on	Publis her	Year	ISBN	
	Roger L Miesfield	Biochemistry	1 st Edition	W.W. Worton &	2017	97803936 15081	
	and Megan McEvoy			Company		(paperbac k)	

	Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter	Molecular Biology of the Cell	6 th Edition	Garland Science	2015	97808153 44322 (hardcover) 97808153 44643 (paperbac k)
	Michael A. Lieberma n and Rick Ricer	BRS Biochemistry , Molecular Biology & Genetics	6 th Edition	Lippincott Williams & Wilkins	2014	97814511 75363
Assessment	For the course MED-209 Biochemistry II there will be an online Formative Midterm Exam. The grade for the course will be contributed by a Lab Report (10%) and a Summative Final Exam (90%). Written exams consist of Single Best Answer MCQs (SBAs) and Short Answer Questions (SAQs).					
Language	English					